SHORTEST PATH THROUGH RANDOM POINTS

Let (M, g1) be a complete d-dimensional Riemannian manifold for d > 1. Let Xn be a set of n sample points in M drawn randomly from a smooth Lebesgue density f supported in M. Let x, y be two points in M. We prove that the normalized length of the power-weighted shortest path between x, y through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2016-10, Vol.26 (5), p.2791-2823
Hauptverfasser: Hwang, Sung Jin, Damelin, Steven B., Hero, Alfred O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (M, g1) be a complete d-dimensional Riemannian manifold for d > 1. Let Xn be a set of n sample points in M drawn randomly from a smooth Lebesgue density f supported in M. Let x, y be two points in M. We prove that the normalized length of the power-weighted shortest path between x, y through Xn converges almost surely to a constant multiple of the Riemannian distance between x, y under the metric tensor gp = f2(1–p)/dg1, where p > 1 is the power parameter.
ISSN:1050-5164
2168-8737
DOI:10.1214/15-AAP1162