SHORTEST PATH THROUGH RANDOM POINTS
Let (M, g1) be a complete d-dimensional Riemannian manifold for d > 1. Let Xn be a set of n sample points in M drawn randomly from a smooth Lebesgue density f supported in M. Let x, y be two points in M. We prove that the normalized length of the power-weighted shortest path between x, y through...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2016-10, Vol.26 (5), p.2791-2823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (M, g1) be a complete d-dimensional Riemannian manifold for d > 1. Let Xn be a set of n sample points in M drawn randomly from a smooth Lebesgue density f supported in M. Let x, y be two points in M. We prove that the normalized length of the power-weighted shortest path between x, y through Xn converges almost surely to a constant multiple of the Riemannian distance between x, y under the metric tensor gp = f2(1–p)/dg1, where p > 1 is the power parameter. |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/15-AAP1162 |