Review and Perspective for Distance-Based Clustering of Vehicle Trajectories

In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2016-11, Vol.17 (11), p.3306-3317
Hauptverfasser: Besse, Philippe C., Guillouet, Brendan, Loubes, Jean-Michel, Royer, Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3317
container_issue 11
container_start_page 3306
container_title IEEE transactions on intelligent transportation systems
container_volume 17
creator Besse, Philippe C.
Guillouet, Brendan
Loubes, Jean-Michel
Royer, Francois
description In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.
doi_str_mv 10.1109/TITS.2016.2547641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1835844065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7464920</ieee_id><sourcerecordid>1835844065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-4483efdf7bd5b832495d92377bcd69cff40a27b0411ca2ddfa5cb109dff171ce3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqXwAxCXSJw4pHhjO49jKY9WigSCwNVy7DV1FZJip0X8exKl4rSr0Tej3QmCSyAzAJLflqvybRYTSGYxZ2nC4CiYAOdZRHrteNhjFuWEk9PgzPtNrzIOMAmKV9xb_Allo8MXdH6LqrN7DE3rwnvrO9kojO6kRx0u6p3v0NnmM2xN-IFrq2oMSyc3vad1Fv15cGJk7fHiMKfB--NDuVhGxfPTajEvIsVo0kWMZRSNNmmleZXRmOVc5zFN00rpJFfGMCLjtCIMQMlYayO5qvontTGQgkI6DW7G3LWsxdbZL-l-RSutWM4LMWgEKOF5TvfQs9cju3Xt9w59JzbtzjX9eQIyyjPGSMJ7CkZKudZ7h-Y_FogYChZDwWIoWBwK7j1Xo8ci4j-fsoTlMaF_EzR2eQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835844065</pqid></control><display><type>article</type><title>Review and Perspective for Distance-Based Clustering of Vehicle Trajectories</title><source>IEEE Electronic Library (IEL)</source><creator>Besse, Philippe C. ; Guillouet, Brendan ; Loubes, Jean-Michel ; Royer, Francois</creator><creatorcontrib>Besse, Philippe C. ; Guillouet, Brendan ; Loubes, Jean-Michel ; Royer, Francois</creatorcontrib><description>In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2547641</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Applications ; Clustering ; Clustering methods ; Indexes ; Measurement ; Roads ; Shape ; Statistics ; Trajectories ; Trajectory ; Trajectory clustering ; Vehicle spacing ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-11, Vol.17 (11), p.3306-3317</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-4483efdf7bd5b832495d92377bcd69cff40a27b0411ca2ddfa5cb109dff171ce3</citedby><cites>FETCH-LOGICAL-c436t-4483efdf7bd5b832495d92377bcd69cff40a27b0411ca2ddfa5cb109dff171ce3</cites><orcidid>0000-0002-0632-7915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7464920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7464920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01305993$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besse, Philippe C.</creatorcontrib><creatorcontrib>Guillouet, Brendan</creatorcontrib><creatorcontrib>Loubes, Jean-Michel</creatorcontrib><creatorcontrib>Royer, Francois</creatorcontrib><title>Review and Perspective for Distance-Based Clustering of Vehicle Trajectories</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.</description><subject>Applications</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Indexes</subject><subject>Measurement</subject><subject>Roads</subject><subject>Shape</subject><subject>Statistics</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Trajectory clustering</subject><subject>Vehicle spacing</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqXwAxCXSJw4pHhjO49jKY9WigSCwNVy7DV1FZJip0X8exKl4rSr0Tej3QmCSyAzAJLflqvybRYTSGYxZ2nC4CiYAOdZRHrteNhjFuWEk9PgzPtNrzIOMAmKV9xb_Allo8MXdH6LqrN7DE3rwnvrO9kojO6kRx0u6p3v0NnmM2xN-IFrq2oMSyc3vad1Fv15cGJk7fHiMKfB--NDuVhGxfPTajEvIsVo0kWMZRSNNmmleZXRmOVc5zFN00rpJFfGMCLjtCIMQMlYayO5qvontTGQgkI6DW7G3LWsxdbZL-l-RSutWM4LMWgEKOF5TvfQs9cju3Xt9w59JzbtzjX9eQIyyjPGSMJ7CkZKudZ7h-Y_FogYChZDwWIoWBwK7j1Xo8ci4j-fsoTlMaF_EzR2eQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Besse, Philippe C.</creator><creator>Guillouet, Brendan</creator><creator>Loubes, Jean-Michel</creator><creator>Royer, Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0632-7915</orcidid></search><sort><creationdate>20161101</creationdate><title>Review and Perspective for Distance-Based Clustering of Vehicle Trajectories</title><author>Besse, Philippe C. ; Guillouet, Brendan ; Loubes, Jean-Michel ; Royer, Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-4483efdf7bd5b832495d92377bcd69cff40a27b0411ca2ddfa5cb109dff171ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Indexes</topic><topic>Measurement</topic><topic>Roads</topic><topic>Shape</topic><topic>Statistics</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Trajectory clustering</topic><topic>Vehicle spacing</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besse, Philippe C.</creatorcontrib><creatorcontrib>Guillouet, Brendan</creatorcontrib><creatorcontrib>Loubes, Jean-Michel</creatorcontrib><creatorcontrib>Royer, Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Besse, Philippe C.</au><au>Guillouet, Brendan</au><au>Loubes, Jean-Michel</au><au>Royer, Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review and Perspective for Distance-Based Clustering of Vehicle Trajectories</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>17</volume><issue>11</issue><spage>3306</spage><epage>3317</epage><pages>3306-3317</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2016.2547641</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0632-7915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2016-11, Vol.17 (11), p.3306-3317
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1835844065
source IEEE Electronic Library (IEL)
subjects Applications
Clustering
Clustering methods
Indexes
Measurement
Roads
Shape
Statistics
Trajectories
Trajectory
Trajectory clustering
Vehicle spacing
Vehicles
title Review and Perspective for Distance-Based Clustering of Vehicle Trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20and%20Perspective%20for%20Distance-Based%20Clustering%20of%20Vehicle%20Trajectories&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Besse,%20Philippe%20C.&rft.date=2016-11-01&rft.volume=17&rft.issue=11&rft.spage=3306&rft.epage=3317&rft.pages=3306-3317&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2547641&rft_dat=%3Cproquest_RIE%3E1835844065%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835844065&rft_id=info:pmid/&rft_ieee_id=7464920&rfr_iscdi=true