Review and Perspective for Distance-Based Clustering of Vehicle Trajectories

In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2016-11, Vol.17 (11), p.3306-3317
Hauptverfasser: Besse, Philippe C., Guillouet, Brendan, Loubes, Jean-Michel, Royer, Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2016.2547641