Investigation of Solid State Diffusion Processes Involved in the Zinc Oxide Sulfidation Reaction

Sulfidation of undoped and aluminum doped zinc oxide materials has been performed by TGA under a H2S atmosphere in order to evaluate the impact of the doping element on sulfidation reaction kinetics and mechanism. The presence of aluminum seems to slow-down the reaction kinetics. This phenomenon mig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion foundations 2016-10, Vol.9, p.100-110
Hauptverfasser: Chevalier, Sébastien, Politano, Olivier, Perrin, Kévin, Chiche, David, Perez-Pellitero, Javier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfidation of undoped and aluminum doped zinc oxide materials has been performed by TGA under a H2S atmosphere in order to evaluate the impact of the doping element on sulfidation reaction kinetics and mechanism. The presence of aluminum seems to slow-down the reaction kinetics. This phenomenon might be explained by a modification of the solid state diffusion processes involved in ZnO sulfidation reaction and the related ZnS outward growth, assuming the presence of aluminum atoms inside ZnO and ZnS phases. In order to determine solid state diffusion mechanisms controlling the reaction kinetics, molecular dynamics simulations were performed using a Coulomb-Buckingham potential. Firstly, the diffusion of the different elements (Zn, O, S) was simulated for both the oxide and sulfide phases considering a vacancy mechanism. Secondly, simulations of the oxide phase doped by a trivalent cation were also performed. The results obtained in this preliminary work are presented and compared to the literature.
ISSN:2296-3650
2296-3642
2674-0303
2296-3642
2674-029X
DOI:10.4028/www.scientific.net/DF.9.100