Effect of Lead Nanoparticles Inhalation on Bone Calcium Sensing Receptor, Hydroxyapatite Crystal and Receptor Activator of Nuclear Factor-Kappa B in Rats
This study aimed to investigate whether Pb nanoparticle exposure affects the bone calcium sensing receptor (CaSR), hydroxyapatite crystal, and receptor activator of nuclear factor-kappa B (RANK) in rats exposed to subchronic and chronic inhalation. Thirty two rats were randomly divided into eight gr...
Gespeichert in:
Veröffentlicht in: | Acta informatica medica 2016-09, Vol.24 (5), p.263 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to investigate whether Pb nanoparticle exposure affects the bone calcium sensing receptor (CaSR), hydroxyapatite crystal, and receptor activator of nuclear factor-kappa B (RANK) in rats exposed to subchronic and chronic inhalation. Thirty two rats were randomly divided into eight groups. One group is a non-exposed group. While three groups were exposed to nanoparticles Pb at the following doses 6.25; 12.5; or 25 mg/m3 an hour daily for 28 days. Another three groups were exposed to nanoparticles Pb at following doses 6.25; 12.5; and 25 mg/m3 one hour daily for 6 months. The expression of trabecular CaSR was significantly decreased at the all doses subchronic exposure compared to the control group (P < 0.05). The CaSR expression significantly decreased in second and third doses subchronic exposure groups compared to the control groups (P < 0.05). With subchronic exposure, the crystal size was increased in second dose group and decreased in lowest and highest doses compared to the control (untreated) group. The crystal size and c-axis were decreased in all dose chronic exposures compared to the control (untreated) group. The expression of cortical RANK was significantly lower at the two lowest dose chronic exposures compared to the control group (P < 0.05). In conclusion, Pb nanoparticle inhibit hydroxyapatite crystal growth at least a part via down regulation of CaSR and RANK. |
---|---|
ISSN: | 0353-8109 1986-5988 |
DOI: | 10.5455/aim.2016.24.263-266 |