System-Level Design of a Full-Duplex Wireless Transceiver for Brain-Machine Interfaces
We propose a new wireless communication architecture for implanted systems that simultaneously stimulates neurons and record neural responses. This architecture can support large numbers of electrodes (>500), providing 100 Mb/s for the downlink of stimulation signals, and gigabits per second for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2016-10, Vol.64 (10), p.3332-3341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new wireless communication architecture for implanted systems that simultaneously stimulates neurons and record neural responses. This architecture can support large numbers of electrodes (>500), providing 100 Mb/s for the downlink of stimulation signals, and gigabits per second for the uplink of neural recordings. We propose a full-duplex transceiver architecture that shares one antenna for both the ultrawideband (UWB) and the 2.45-GHz industrial, scientific, and medical band. A new pulse shaper is used for the gigabits per second uplink to simplify the transceiver design, while supporting several modulation formats with high data rates. To validate our system-level design for brain-machine interfaces, we present an ex-vivo experimental demonstration of the architecture. While the system design is for an integrated solution, the proof-of-concept demonstration uses discrete components. Good bit error rate performance over a biological channel at 0.5-, 1-, and 2-Gb/s data rates for uplink telemetry (UWB) and 100 Mb/s for downlink telemetry (2.45-GHz band) are achieved. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2016.2600301 |