Energy-efficient power control for underlaying D2D communication with channel uncertainty: User-centric versus network-centric
Most existing resource management problem models arise from the original desire of allocating resources in either a user-centric or network-centric manner. The difference between their objectives is obvious: user-centric methods attempt to optimize the utility of individual users, whereas network-ce...
Gespeichert in:
Veröffentlicht in: | Journal of communications and networks 2016, 18(4), , pp.589-599 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most existing resource management problem models arise from the original desire of allocating resources in either a user-centric or network-centric manner. The difference between their objectives is obvious: user-centric methods attempt to optimize the utility of individual users, whereas network-centric models intend to optimize the collective utilities of the entire network. In this paper, from the above two aspects, we analyze the robust power control problem in device-to-device (D2D) communication underlaying cellular networks, where two types of channel uncertainty set (e.g., ellipsoidal and column-wise) are considered. In the user-centric method, we formulate the problem into the form of a Stackelberg game, where the energy efficiency (EE) of each user is the ingredient of utility function. In order to protect the cellular user equipment's (CUE) uplink transmission, we introduce a price based cost function into the objectives of D2D user equipment (DUE). The existence and uniqueness of the game with the influence of channel uncertainty and price are discussed. In the network-centric method, we aim to maximize the collective EE of CUEs and DUEs. We show that by the appropriate mathematical transformation, the network-centric D2D power control problem has the identical local solution to that of a special case of the user-centric problem, where price plays a key role. Numerical results show the performance of the robust power control algorithms in the user-centric and network-centric models. |
---|---|
ISSN: | 1229-2370 1976-5541 |
DOI: | 10.1109/JCN.2016.000082 |