Analysis, Design, and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter to compensa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2016-09, Vol.52 (5), p.4269-4280
Hauptverfasser: Tao Ye, NingYi Dai, Chi-Seng Lam, Man-Chung Wong, Guerrero, Josep M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter to compensate reactive power and transfer active power simultaneously. It is a promising solution for microgrid and building-integrated distributed generator systems. A quasi-proportional-resonant (quasi-PR) controller is applied to reduce the steady-state current tracking errors of the CGCI in this paper. The quasi-PR controller generates the voltage reference for use of carrier-based pulse-width modulation, which can effectively reduce output current ripples. The second-order coupling impedance of the CGCI causes its modeling and controller design to differ from that of the conventional IGCI. A comprehensive design method for the quasi-PR controller in a CGCI is developed. The quasi-PR controller is also compared with a proportional-integration current controller. Simulation results are provided to verify the effectiveness of the quasi-PR controller and its design method in a CGCI. The current tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2016.2581152