CONTINUUM PERCOLATION FOR GAUSSIAN ZEROES AND GINIBRE EIGENVALUES
We study continuum percolation on certain negatively dependent point processes on ℝ². Specifically, we study the Ginibre ensemble and the planar Gaussian zero process, which are the two main natural models of translation invariant point processes on the plane exhibiting local repulsion. For the Gini...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2016-09, Vol.44 (5), p.3357-3384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study continuum percolation on certain negatively dependent point processes on ℝ². Specifically, we study the Ginibre ensemble and the planar Gaussian zero process, which are the two main natural models of translation invariant point processes on the plane exhibiting local repulsion. For the Ginibre ensemble, we establish the uniqueness of infinite cluster in the supercritical phase. For the Gaussian zero process, we establish that a non-trivial critical radius exists, and we prove the uniqueness of infinite cluster in the supercritical regime. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/15-aop1051 |