CONTINUUM PERCOLATION FOR GAUSSIAN ZEROES AND GINIBRE EIGENVALUES

We study continuum percolation on certain negatively dependent point processes on ℝ². Specifically, we study the Ginibre ensemble and the planar Gaussian zero process, which are the two main natural models of translation invariant point processes on the plane exhibiting local repulsion. For the Gini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2016-09, Vol.44 (5), p.3357-3384
Hauptverfasser: Ghosh, Subhroshekhar, Krishnapur, Manjunath, Peres, Yuval
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study continuum percolation on certain negatively dependent point processes on ℝ². Specifically, we study the Ginibre ensemble and the planar Gaussian zero process, which are the two main natural models of translation invariant point processes on the plane exhibiting local repulsion. For the Ginibre ensemble, we establish the uniqueness of infinite cluster in the supercritical phase. For the Gaussian zero process, we establish that a non-trivial critical radius exists, and we prove the uniqueness of infinite cluster in the supercritical regime.
ISSN:0091-1798
2168-894X
DOI:10.1214/15-aop1051