Nonparametric Quantile Estimation Based on Surrogate Models

Nonparametric estimation of a quantile q m(X),α of a random variable m(X) is considered, where m : ℝ d → ℝ is a function, which is costly to compute and X is an ℝ d -valued random variable with known distribution. Monte Carlo surrogate quantile estimates are considered, where in a first step, the fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-10, Vol.62 (10), p.5727-5739
Hauptverfasser: Enss, Georg C., Kohler, Michael, Krzyzak, Adam, Platz, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonparametric estimation of a quantile q m(X),α of a random variable m(X) is considered, where m : ℝ d → ℝ is a function, which is costly to compute and X is an ℝ d -valued random variable with known distribution. Monte Carlo surrogate quantile estimates are considered, where in a first step, the function m is estimated by some estimate (surrogate) m n , and then, the quantile q m(X),α is estimated by a Monte Carlo estimate of the quantile qm n(X),α . A general error bound on the error of this quantile estimate is derived, which depends on the local error of the function estimate m n , and the rates of convergence of the corresponding Monte Carlo surrogate quantile estimates are analyzed for two different function estimates. The finite sample size behavior of the estimates is investigated in simulations.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2586080