A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates
The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro-di...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2016-10, Vol.20 (4), p.1021-1059 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro-differential equations have been developed. In order to provide a solid mathematical foundation for these methods, we derive a Feynman–Kac representation of variational solutions to partial integro-differential equations that characterize conditional expectations of functionals of killed time-inhomogeneous Lévy processes. We allow a wide range of underlying stochastic processes, comprising processes with Brownian part as well as a broad class of pure jump processes such as generalized hyperbolic, multivariate normal inverse Gaussian, tempered stable, and
α
-semistable Lévy processes. By virtue of our mild regularity assumptions as to the killing rate and the initial condition of the partial integro-differential equation, our results provide a rigorous basis for numerous applications in financial mathematics and in probability theory. We implement a Galerkin scheme to solve the corresponding pricing equation numerically and illustrate the effect of a killing rate. |
---|---|
ISSN: | 0949-2984 1432-1122 |
DOI: | 10.1007/s00780-016-0301-7 |