Geographically weighted regression and multicollinearity: dispelling the myth

Geographically weighted regression (GWR) extends the familiar regression framework by estimating a set of parameters for any number of locations within a study area, rather than producing a single parameter estimate for each relationship specified in the model. Recent literature has suggested that G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical systems 2016-10, Vol.18 (4), p.303-329
Hauptverfasser: Fotheringham, A. Stewart, Oshan, Taylor M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geographically weighted regression (GWR) extends the familiar regression framework by estimating a set of parameters for any number of locations within a study area, rather than producing a single parameter estimate for each relationship specified in the model. Recent literature has suggested that GWR is highly susceptible to the effects of multicollinearity between explanatory variables and has proposed a series of local measures of multicollinearity as an indicator of potential problems. In this paper, we employ a controlled simulation to demonstrate that GWR is in fact very robust to the effects of multicollinearity. Consequently, the contention that GWR is highly susceptible to multicollinearity issues needs rethinking.
ISSN:1435-5930
1435-5949
DOI:10.1007/s10109-016-0239-5