Rapid decadal evolution in the groundwater arsenic content of Kolkata, India and its correlation with the practices of her dwellers
Increasing arsenic contamination in the groundwater is one of the biggest environmental challenges that the Bengal delta is facing today. Groundwater is still the main source of water for a large number of population in this region and therefore, significant presence of toxic arsenic has a direct co...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2016-10, Vol.188 (10), p.584, Article 584 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing arsenic contamination in the groundwater is one of the biggest environmental challenges that the Bengal delta is facing today. Groundwater is still the main source of water for a large number of population in this region and therefore, significant presence of toxic arsenic has a direct consequence on human lives here. Moreover, arsenic also enters into the food chain through the consumed agricultural products grown in this area. Therefore, acquiring knowledge about the ever-changing map of arsenic contamination and employing adequate protective measures are of utmost importance. Here, we present a comprehensive municipal ward-wise map of the arsenic content of the shallow groundwater table of Kolkata—the most important and highly population dense city of the delta. Comparison with previously available data reveals a rapid change and the grim situation for the city. Our study suggests that it should be an immediate task of the administration to extend treated water service to the whole population of the city for direct consumption, and artificial recharge and maximum rainwater replenishment need to be taken up with utmost urgency to avoid intrusion of toxicity in biological food chains via agricultural products. We hope our study would drive the city planners to reconsider the existing urbanization and development plans of all the cities, placed over arsenic-contaminated groundwater aquifers. |
---|---|
ISSN: | 0167-6369 1573-2959 |
DOI: | 10.1007/s10661-016-5592-9 |