Fibonacci Variations of a Conjecture of Polignac

In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive intege...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integers (Berlin, Germany) Germany), 2012-08, Vol.12 (4), p.659-667
1. Verfasser: Jones, Lenny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 4
container_start_page 659
container_title Integers (Berlin, Germany)
container_volume 12
creator Jones, Lenny
description In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms or , where is a Fibonacci number, and is a prime.
doi_str_mv 10.1515/integers-2011-0126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1820269686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4184885031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1779-63cea28f5c71bb3d5388c5265f9963aebc1554e92b733575a9dbdd01b32d7db73</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGq_gKcFz6uZpEk2N6VYKxT0oF5D_m1JqZua7CL99mapQi-e5s3w3jz4IXQN-BYYsLvQ9X7jU64JBqgxEH6GJtBwUWPOyPmJvkSznLcYFw9QTvAE4WUwsdPWhupDp6D7ELtcxbbS1SJ2W2_7Iflxf427sCnGK3TR6l32s985Re_Lx7fFql6_PD0vHta1BSFkzan1mjQtswKMoY7RprGMcNZKyan2xgJjcy-JEZQywbR0xjkMhhInXDlO0c3x7z7Fr8HnXm3jkLpSqaAhmHDJG15c5OiyKeacfKv2KXzqdFCA1QhH_cFRIxw1wimh-2PoW-96n5zfpOFQxEnDv2Egc84k_QFKcm2F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820269686</pqid></control><display><type>article</type><title>Fibonacci Variations of a Conjecture of Polignac</title><source>EZB-FREE-00999 freely available EZB journals</source><source>De Gruyter journals</source><creator>Jones, Lenny</creator><creatorcontrib>Jones, Lenny</creatorcontrib><description>In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms or , where is a Fibonacci number, and is a prime.</description><identifier>ISSN: 1867-0652</identifier><identifier>EISSN: 1867-0652</identifier><identifier>EISSN: 1867-0660</identifier><identifier>DOI: 10.1515/integers-2011-0126</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH &amp; Co. KG</publisher><subject>Fibonacci Number ; Polignac ; Prime Number</subject><ispartof>Integers (Berlin, Germany), 2012-08, Vol.12 (4), p.659-667</ispartof><rights>Copyright Walter de Gruyter GmbH Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1779-63cea28f5c71bb3d5388c5265f9963aebc1554e92b733575a9dbdd01b32d7db73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/integers-2011-0126/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/integers-2011-0126/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Jones, Lenny</creatorcontrib><title>Fibonacci Variations of a Conjecture of Polignac</title><title>Integers (Berlin, Germany)</title><description>In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms or , where is a Fibonacci number, and is a prime.</description><subject>Fibonacci Number</subject><subject>Polignac</subject><subject>Prime Number</subject><issn>1867-0652</issn><issn>1867-0652</issn><issn>1867-0660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGq_gKcFz6uZpEk2N6VYKxT0oF5D_m1JqZua7CL99mapQi-e5s3w3jz4IXQN-BYYsLvQ9X7jU64JBqgxEH6GJtBwUWPOyPmJvkSznLcYFw9QTvAE4WUwsdPWhupDp6D7ELtcxbbS1SJ2W2_7Iflxf427sCnGK3TR6l32s985Re_Lx7fFql6_PD0vHta1BSFkzan1mjQtswKMoY7RprGMcNZKyan2xgJjcy-JEZQywbR0xjkMhhInXDlO0c3x7z7Fr8HnXm3jkLpSqaAhmHDJG15c5OiyKeacfKv2KXzqdFCA1QhH_cFRIxw1wimh-2PoW-96n5zfpOFQxEnDv2Egc84k_QFKcm2F</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Jones, Lenny</creator><general>Walter de Gruyter GmbH &amp; Co. KG</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>Fibonacci Variations of a Conjecture of Polignac</title><author>Jones, Lenny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1779-63cea28f5c71bb3d5388c5265f9963aebc1554e92b733575a9dbdd01b32d7db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fibonacci Number</topic><topic>Polignac</topic><topic>Prime Number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Lenny</creatorcontrib><collection>CrossRef</collection><jtitle>Integers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Lenny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci Variations of a Conjecture of Polignac</atitle><jtitle>Integers (Berlin, Germany)</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>659</spage><epage>667</epage><pages>659-667</pages><issn>1867-0652</issn><eissn>1867-0652</eissn><eissn>1867-0660</eissn><abstract>In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms or , where is a Fibonacci number, and is a prime.</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH &amp; Co. KG</pub><doi>10.1515/integers-2011-0126</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-0652
ispartof Integers (Berlin, Germany), 2012-08, Vol.12 (4), p.659-667
issn 1867-0652
1867-0652
1867-0660
language eng
recordid cdi_proquest_journals_1820269686
source EZB-FREE-00999 freely available EZB journals; De Gruyter journals
subjects Fibonacci Number
Polignac
Prime Number
title Fibonacci Variations of a Conjecture of Polignac
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20Variations%20of%20a%20Conjecture%20of%20Polignac&rft.jtitle=Integers%20(Berlin,%20Germany)&rft.au=Jones,%20Lenny&rft.date=2012-08-01&rft.volume=12&rft.issue=4&rft.spage=659&rft.epage=667&rft.pages=659-667&rft.issn=1867-0652&rft.eissn=1867-0652&rft_id=info:doi/10.1515/integers-2011-0126&rft_dat=%3Cproquest_cross%3E4184885031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820269686&rft_id=info:pmid/&rfr_iscdi=true