Fibonacci Variations of a Conjecture of Polignac
In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive intege...
Gespeichert in:
Veröffentlicht in: | Integers (Berlin, Germany) Germany), 2012-08, Vol.12 (4), p.659-667 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form
, for some integer
and some prime
. In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms
or
, where
is a Fibonacci number, and
is a prime. |
---|---|
ISSN: | 1867-0652 1867-0652 1867-0660 |
DOI: | 10.1515/integers-2011-0126 |