Fibonacci Variations of a Conjecture of Polignac

In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive intege...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integers (Berlin, Germany) Germany), 2012-08, Vol.12 (4), p.659-667
1. Verfasser: Jones, Lenny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1849, Alphonse de Polignac conjectured that every odd positive integer can be written in the form , for some integer and some prime . In 1950, Erdős constructed infinitely many counterexamples to Polignac's conjecture. In this article, we show that there exist infinitely many positive integers that cannot be written in either of the forms or , where is a Fibonacci number, and is a prime.
ISSN:1867-0652
1867-0652
1867-0660
DOI:10.1515/integers-2011-0126