Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS) synthesized by microorganisms contribute to sustainable aquacultu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2016-09, Vol.8 (9), p.369
Hauptverfasser: Camacho-Chab, Juan, Lango-Reynoso, Fabiola, Castañeda-Chávez, María, Galaviz-Villa, Itzel, Hinojosa-Garro, Demian, Ortega-Morales, Benjamín
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS) synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air-seawater and seawater-sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs) and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.
ISSN:2073-4441
2073-4441
DOI:10.3390/w8090369