Quasi‐conscious multivariate systems

Conscious experience is awash with underlying relationships. Moreover, for various brain regions such as the visual cortex, the system is biased toward some states. Representing this bias using a probability distribution shows that the system can define expected quantities. The mathematical theory i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2016-09, Vol.21 (S1), p.125-147
1. Verfasser: Mason, Jonathan W. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conscious experience is awash with underlying relationships. Moreover, for various brain regions such as the visual cortex, the system is biased toward some states. Representing this bias using a probability distribution shows that the system can define expected quantities. The mathematical theory in this article links these facts using expected float entropy (efe), which is a measure of the expected amount of information needed, to specify the state of the system, beyond what is already known about the system from relationships that appear as parameters. Under the requirement that the relationship parameters minimize efe, the brain defines relationships. It is proposed that when a brain state is interpreted in the context of these relationships the brain state acquires meaning in the form of the relational content of the associated experience. For a given set, the theory represents relationships using weighted relations which assign continuous weights, from 0 to 1, to the elements of the Cartesian product of that set. The relationship parameters include weighted relations on the nodes of the system and on their set of states. Examples obtained using Monte‐Carlo methods (where relationship parameters are chosen uniformly at random) suggest that efe distributions with long left tails are most important. © 2015 Wiley Periodicals, Inc. Complexity 21: 125–147, 2016
ISSN:1076-2787
1099-0526
DOI:10.1002/cplx.21720