LOCAL LIMIT THEOREM AND EQUIVALENCE OF DYNAMIC AND STATIC POINTS OF VIEW FOR CERTAIN BALLISTIC RANDOM WALKS IN I.I.D. ENVIRONMENTS

In this work, we discuss certain ballistic random walks in random environments on ℤd, and prove the equivalence between the static and dynamic points of view in dimension d ≥ 4. Using this equivalence, we also prove a version of a local limit theorem which relates the local behavior of the quenched...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2016-07, Vol.44 (4), p.2889-2979
Hauptverfasser: Berger, Noam, Cohen, Moran, Rosenthal, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we discuss certain ballistic random walks in random environments on ℤd, and prove the equivalence between the static and dynamic points of view in dimension d ≥ 4. Using this equivalence, we also prove a version of a local limit theorem which relates the local behavior of the quenched and annealed measures of the random walk by a prefactor.
ISSN:0091-1798
2168-894X
DOI:10.1214/15-AOP1038