LOESS smoothed density estimates for multivariate survival data subject to censoring and masking
Actuaries often encounter censored and masked survival data when constructing multiple-decrement tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS smoothing techniques that are employed in the presence of left-censored data, while still allowing for...
Gespeichert in:
Veröffentlicht in: | Annals of actuarial science 2016-09, Vol.10 (2), p.285-302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Actuaries often encounter censored and masked survival data when constructing multiple-decrement tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS smoothing techniques that are employed in the presence of left-censored data, while still allowing for right-censored and exact observations, as well as masked causes of failure. The smoothing mechanism is incorporated as part of an expectation-maximisation algorithm. The proposed models are applied to a bivariate African sleeping sickness data set. |
---|---|
ISSN: | 1748-4995 1748-5002 |
DOI: | 10.1017/S1748499516000099 |