LOESS smoothed density estimates for multivariate survival data subject to censoring and masking

Actuaries often encounter censored and masked survival data when constructing multiple-decrement tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS smoothing techniques that are employed in the presence of left-censored data, while still allowing for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of actuarial science 2016-09, Vol.10 (2), p.285-302
Hauptverfasser: Adamic, Peter, Guse, Jenna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Actuaries often encounter censored and masked survival data when constructing multiple-decrement tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS smoothing techniques that are employed in the presence of left-censored data, while still allowing for right-censored and exact observations, as well as masked causes of failure. The smoothing mechanism is incorporated as part of an expectation-maximisation algorithm. The proposed models are applied to a bivariate African sleeping sickness data set.
ISSN:1748-4995
1748-5002
DOI:10.1017/S1748499516000099