Quantifying air–sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise

To understand better the role of ocean surface chemical buffering capacity in mitigating the recent atmospheric CO 2 rise, we investigated potentials of wintertime mixed-layer dissolved inorganic carbon (DIC) to increase after re-equilibration with decadal atmospheric CO 2 rise and the corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oceanography 2016-08, Vol.72 (4), p.651-659
Hauptverfasser: Zhai, Wei-dong, de Zhao, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand better the role of ocean surface chemical buffering capacity in mitigating the recent atmospheric CO 2 rise, we investigated potentials of wintertime mixed-layer dissolved inorganic carbon (DIC) to increase after re-equilibration with decadal atmospheric CO 2 rise and the corresponding anthropogenic CO 2 accumulation rates, based upon carbonate system chemistry over the global ocean surface above the wintertime thermocline. This is an idealized study to quantify the isolated effect of atmospheric CO 2 rise on the DIC content of the global mixed layer, assuming all else constant. Our results show that the potentials of wintertime DIC over the global open ocean surface to rise after re-equilibration with the elevated atmospheric CO 2  mol fraction in a reference year 2000 ranged from 0.28 to 0.70 μmol kg −1  ppm −1 (ppm = parts of CO 2 per million dry air), while the global mean wintertime sea surface DIC increase rate was close to 1.0 μmol kg −1  year −1 . From 1995 to 2005, the decadal mean atmospheric CO 2 rise implies an anthropogenic CO 2 accumulation rate of 0.40 × 10 15  g C year −1 within the global ocean surface. From the 1960s to 2000s, the air–sea re-equilibration-implied ocean surface anthropogenic CO 2 accumulation rate may have increased by 46 % due to the accelerated atmospheric CO 2 rise. However, the chemical buffering capacity within the ocean surface may have declined by 16 % during the same period.
ISSN:0916-8370
1573-868X
DOI:10.1007/s10872-016-0350-8