Dissipative Euler Flows with Onsager-Critical Spatial Regularity

For any ɛ > 0 we show the existence of continuous periodic weak solutions v of the Euler equations that do not conserve the kinetic energy and belong to the space Lt1(Cx1/3−ε); namely, x ↦ v (x,t) is ⅓−ε‐Hölder continuous in space at a.e. time t and the integral ∫[ υ(⋅,t) ]1/3−εdt is finite. A we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2016-09, Vol.69 (9), p.1613-1670
Hauptverfasser: Buckmaster, Tristan, De Lellis, Camillo, Székelyhidi Jr, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any ɛ > 0 we show the existence of continuous periodic weak solutions v of the Euler equations that do not conserve the kinetic energy and belong to the space Lt1(Cx1/3−ε); namely, x ↦ v (x,t) is ⅓−ε‐Hölder continuous in space at a.e. time t and the integral ∫[ υ(⋅,t) ]1/3−εdt is finite. A well‐known open conjecture of L. Onsager claims that such solutions exist even in the class Lt∞(Cx1/3−ε).© 2016 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21586