Dissipative Euler Flows with Onsager-Critical Spatial Regularity
For any ɛ > 0 we show the existence of continuous periodic weak solutions v of the Euler equations that do not conserve the kinetic energy and belong to the space Lt1(Cx1/3−ε); namely, x ↦ v (x,t) is ⅓−ε‐Hölder continuous in space at a.e. time t and the integral ∫[ υ(⋅,t) ]1/3−εdt is finite. A we...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2016-09, Vol.69 (9), p.1613-1670 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any ɛ > 0 we show the existence of continuous periodic weak solutions v of the Euler equations that do not conserve the kinetic energy and belong to the space Lt1(Cx1/3−ε); namely, x ↦ v (x,t) is ⅓−ε‐Hölder continuous in space at a.e. time t and the integral ∫[ υ(⋅,t) ]1/3−εdt is finite. A well‐known open conjecture of L. Onsager claims that such solutions exist even in the class Lt∞(Cx1/3−ε).© 2016 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.21586 |