Mixture Proportioning Approach for Low-CO^sub 2^ Concrete Using Supplementary Cementitious Materials
This study developed a simple and rational mixture proportioning procedure for low-CO2 concrete using supplementary cementitious materials (SCMs) such as fly ash (FA), ground-granulated blast-furnace slag (GGBS), and condensed silica fumes (SF). Life-cycle CO2 reduction ratio was critically consider...
Gespeichert in:
Veröffentlicht in: | ACI materials journal 2016-07, Vol.113 (4), p.533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study developed a simple and rational mixture proportioning procedure for low-CO2 concrete using supplementary cementitious materials (SCMs) such as fly ash (FA), ground-granulated blast-furnace slag (GGBS), and condensed silica fumes (SF). Life-cycle CO2 reduction ratio was critically considered as one of the targeted requirements. The effect of SCMs on CO2 reduction and the compressive strength of concrete was examined by a nonlinear multiple regression analysis using a total of 12,537 datasets, which produced schematized data allowing for the straightforward design of SCMs for satisfying the targeted requirements. Considering the determined substitution level of SCMs for a targeted CO2 reduction ratio, unit binder content and water-binder ratio (W/B) were formulated for the designed compressive strength and entrained air content of concrete. The fine aggregate-to-total aggregate ratio (S/a) was determined from the quadratic formula of a parametrized value for a targeted initial slump of concrete. Overall, the developed procedure is expected to encourage the practical production and application of low-CO2 concrete in the ready mixed concrete field. |
---|---|
ISSN: | 0889-325X 1944-737X |
DOI: | 10.14359/51688992 |