Design and evaluation of a UV LED Photocatalytic Reactor Using Anodized TiO^sub 2^ Nanotubes

A bench-scale flow-through photocatalytic reactor using light emitting diodes (LED) as light source and a TiO2 nanotube array (TN) as immobilized catalyst has been designed, fabricated and tested on commonly studied contaminants. The photoreactor is comprised of 144, 365-nm UV-LED lamps mounted alon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water environment research 2016-08, Vol.88 (8), p.785
Hauptverfasser: Ghosh, Jyoti P, Achari, Gopal, Langford, Cooper H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bench-scale flow-through photocatalytic reactor using light emitting diodes (LED) as light source and a TiO2 nanotube array (TN) as immobilized catalyst has been designed, fabricated and tested on commonly studied contaminants. The photoreactor is comprised of 144, 365-nm UV-LED lamps mounted along the inner periphery of an annular cylinder. An ordered array of TN, as catalyst, was immobilized by electrochemical anodization of a titanium cylinder and placed in the center of the reactor. Synthesized TN was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Laboratory investigations were conducted on the photoreactor to treat 4-chlorophenol (4-CP), atrazine and methylene blue. The performance of the photoreactor at different flow rates and at varying distances of photocatalyst from the light source was monitored. The photocatalytic reaction rates increased with bubbling oxygen into the reservoir. Significant improvement was observed when H2O2 was added and degradation to detection limits was observed.
ISSN:1061-4303
1554-7531