An FPGA-Based Instrument for En-Masse RRAM Characterization With ns Pulsing Resolution

An FPGA-based instrument with capabilities of on-board oscilloscope and nanoscale pulsing (70 ns @ ±10 V) is presented, thus allowing exploration of the nano-scale switching of RRAM devices. The system possesses less than 1% read-out error for resistance range between 1 kΩ to 1 MΩ, and demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2016-06, Vol.63 (6), p.818-826
Hauptverfasser: Jinling Xing, Serb, Alexander, Khiat, Ali, Berdan, Radu, Hui Xu, Prodromakis, Themistoklis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An FPGA-based instrument with capabilities of on-board oscilloscope and nanoscale pulsing (70 ns @ ±10 V) is presented, thus allowing exploration of the nano-scale switching of RRAM devices. The system possesses less than 1% read-out error for resistance range between 1 kΩ to 1 MΩ, and demonstrated its functionality on characterizing solid-state prototype RRAM devices on wafer; devices exhibiting gradual switching behavior under pulsing with duration spanning between 30 ns to 100 μs. The data conversion error-induced degradation on read-out accuracy is studied extensively and verified by standard linear resistor measurements. The integrated oscilloscope capability extends the versatility of our instrument, rendering a powerful tool for processing development of emerging memory technologies but also for testing theoretical hypotheses arising in the new field of memristors.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2016.2538039