Facile synthesis, morphology and structure of Dy^sub 2^O3 nanoparticles through electrochemical precipitation

The aim of this research was to introduce a new, facile and simple method for synthesis of Dy2O3 nanostructures at room temperature. For the first time, galvanostatic electrodeposition was used to synthesize Dy2O3 particles, and the influence of the current density on the structure and morphology of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2016-08, Vol.35 (8), p.637
Hauptverfasser: Yousefi, Taher, Torab-mostaedi, Meisam, Aghaei, Abolfazl, Ghasemi-mobtaker, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this research was to introduce a new, facile and simple method for synthesis of Dy2O3 nanostructures at room temperature. For the first time, galvanostatic electrodeposition was used to synthesize Dy2O3 particles, and the influence of the current density on the structure and morphology of the product was studied. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). The results show that the current density has little effect on the chemical composition but great effect on the structure and morphology of the samples. The average size of the particles decreases as the applied current density increases. The grain size of as-prepared samples decreases from 500 to 70 nm when the current density increases from 0.5 to 6.0 mA·cm-2. To obtain oxide product, the as-prepared samples were heat-treated at 1,000 °C. The results show that the heat-treated samples have smaller particles. The XRD results show that the similar patterns are observed in the samples synthesized at different current densities, and the only difference from the JCPDS card is the ratio of peak intensities. With the increase in the current density, a decrease in the current efficiency is observed.
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-015-0448-y