The mosaic multiple stellar populations in [omega] Centauri: the horizontal branch and the main sequence

We interpret the stellar population of ... Centauri by means of a population synthesis analysis, following the most recent observational guidelines for input metallicities, helium and [(C+N+O)/Fe] contents. We deal at the same time with the main sequences, sub-giant and horizontal branch (HB) data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (4), p.4525
Hauptverfasser: Tailo, M, Di Criscienzo, M, D'Antona, F, Caloi, V, Ventura, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We interpret the stellar population of ... Centauri by means of a population synthesis analysis, following the most recent observational guidelines for input metallicities, helium and [(C+N+O)/Fe] contents. We deal at the same time with the main sequences, sub-giant and horizontal branch (HB) data. The reproduction of the observed colour-magnitude features is very satisfying and bears interesting hints concerning the evolutionary history of this peculiar stellar ensemble. Our main results are: (1) no significant spread in age is required to fit the colour-magnitude diagram. Indeed, we can use coeval isochrones for the synthetic populations, and we estimate that the ages fall within a ~0.5 Gyr time interval; in particular the most metal-rich population can be coeval (in the above meaning) with the others, if its stars are very helium-rich (Y ~ 0.37) and with the observed CNO enhancement ([(C+N+O)/Fe] = +0.7); (2) a satisfactory fit of the whole HB is obtained, consistent with the choice of the populations providing a good reproduction of the main sequence and sub-giant data; (3) the split in magnitude observed in the red HB is well reproduced assuming the presence of two stellar populations in the two different sequences observed: a metal-poor population made of stars evolving from the blue side (luminous branch) and a metal richer one whose stars are in a stage closer to the zero age HB (dimmer branch). This modelization also fits satisfactorily the period and the [Fe/H] distribution of the RR Lyrae stars. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0035-8711
1365-2966