Optimization of the food waste water incineration with respect to CO and NO^sub x^ emission characteristics
The incineration of food waste water in conjunction with the domestic waste is getting attention as a food waste water treatment method, due to its low treatment cost and high efficiency. Many studies verified that the ammonia in the food waste water served as a reducing agent to suppress the genera...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2016-07, Vol.18 (3), p.455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incineration of food waste water in conjunction with the domestic waste is getting attention as a food waste water treatment method, due to its low treatment cost and high efficiency. Many studies verified that the ammonia in the food waste water served as a reducing agent to suppress the generation of NOx when the food waste water was injected and incinerated. However, they have not revealed the correlation between the change in the concentration of the CO and NOx by the influence of the solid matters contained in the food waste water on the incineration of the wastes. The purpose of this study is to determine the optimum amount of the food waste water injected through four nozzles in the primary and secondary incineration chambers and to assess the correlation between the concentration of CO and NOx in accordance with the food waste water injection in each chamber of the incinerator. For the study, four food waste water injection nozzles were installed; two (A and B) at the top of the primary incineration chamber and the other two (C and D) in the secondary incineration chamber. The correlation between the change in the concentration of CO and NOx was studied adjusting the amount of the food waste water injected through the nozzles. From the result, Case II showed the concentration of CO and NOx as 1.8-10 and 14-26 ppm, respectively, while Case I showed that of CO and NOx as 15-30 and 9-18 ppm, respectively. Those levels are well below the Korean emission criteria, 50 ppm for CO and 80 ppm for NOx. Based on the results, it is evident there is a certain trade-off between emission of CO and NOx, and Case II which has relatively low concentration of CO is easier and cheaper to control. |
---|---|
ISSN: | 1438-4957 1611-8227 |
DOI: | 10.1007/s10163-016-0477-0 |