Probabilistic anomaly detection in natural gas time series data

This paper introduces a probabilistic approach to anomaly detection, specifically in natural gas time series data. In the natural gas field, there are various types of anomalies, each of which is induced by a range of causes and sources. The causes of a set of anomalies are examined and categorized,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2016-07, Vol.32 (3), p.948-956
Hauptverfasser: Akouemo, Hermine N., Povinelli, Richard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a probabilistic approach to anomaly detection, specifically in natural gas time series data. In the natural gas field, there are various types of anomalies, each of which is induced by a range of causes and sources. The causes of a set of anomalies are examined and categorized, and a Bayesian maximum likelihood classifier learns the temporal structures of known anomalies. Given previously unseen time series data, the system detects anomalies using a linear regression model with weather inputs, after which the anomalies are tested for false positives and classified using a Bayesian classifier. The method can also identify anomalies of an unknown origin. Thus, the likelihood of a data point being anomalous is given for anomalies of both known and unknown origins. This probabilistic anomaly detection method is tested on a reported natural gas consumption data set.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2015.06.001