Antimagic Labeling of Regular Graphs

A graph G=(V,E) is antimagic if there is a one‐to‐one correspondence f:E→{1,2,...,|E|} such that for any two vertices u,v, ∑e∈E(u)f(e)≠∑e∈E(v)f(e). It is known that bipartite regular graphs are antimagic and nonbipartite regular graphs of odd degree at least three are antimagic. Whether all nonbipar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2016-08, Vol.82 (4), p.339-349
Hauptverfasser: Chang, Feihuang, Liang, Yu-Chang, Pan, Zhishi, Zhu, Xuding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G=(V,E) is antimagic if there is a one‐to‐one correspondence f:E→{1,2,...,|E|} such that for any two vertices u,v, ∑e∈E(u)f(e)≠∑e∈E(v)f(e). It is known that bipartite regular graphs are antimagic and nonbipartite regular graphs of odd degree at least three are antimagic. Whether all nonbipartite regular graphs of even degree are antimagic remained an open problem. In this article, we solve this problem and prove that all even degree regular graphs are antimagic.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.21905