Duality for mixed-integer convex minimization

We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2016-07, Vol.158 (1-2), p.547-564
Hauptverfasser: Baes, Michel, Oertel, Timm, Weismantel, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 1-2
container_start_page 547
container_title Mathematical programming
container_volume 158
creator Baes, Michel
Oertel, Timm
Weismantel, Robert
description We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.
doi_str_mv 10.1007/s10107-015-0917-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1796128176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4087844161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-29fae038d281f3a2a6b5489f3881136aff071ab79ec7298c6bae3f9c0bf7333c3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoWEcfwF3BdfTepk2apYw6CgNudB3STCIZpu2YtDL16c1QF25cXTicH-5HyDXCLQKIu4iAIChgRUGioNMJybBknJa85KckAygqWnGEc3IR4xYAkNV1RujDqHd-mHLXh7z1B7uhvhvshw256bsve0hi51v_rQffd5fkzOldtFe_d0Henx7fls90_bp6Wd6vqWGVHGghnbbA6k1Ro2O60Lypylq6tIjIuHYOBOpGSGtEIWvDG22ZkwYaJxhjhi3Izdy7D_3naOOgtv0YujSpUEiOqVfw5MLZZUIfY7BO7YNvdZgUgjpSUTMVlaioIxU1pUwxZ2LydunNP83_hn4ATrdkqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796128176</pqid></control><display><type>article</type><title>Duality for mixed-integer convex minimization</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Baes, Michel ; Oertel, Timm ; Weismantel, Robert</creator><creatorcontrib>Baes, Michel ; Oertel, Timm ; Weismantel, Robert</creatorcontrib><description>We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-015-0917-y</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convex analysis ; Integer programming ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Operations research ; Optimization ; Short Communication ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2016-07, Vol.158 (1-2), p.547-564</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-29fae038d281f3a2a6b5489f3881136aff071ab79ec7298c6bae3f9c0bf7333c3</citedby><cites>FETCH-LOGICAL-c359t-29fae038d281f3a2a6b5489f3881136aff071ab79ec7298c6bae3f9c0bf7333c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-015-0917-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-015-0917-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Baes, Michel</creatorcontrib><creatorcontrib>Oertel, Timm</creatorcontrib><creatorcontrib>Weismantel, Robert</creatorcontrib><title>Duality for mixed-integer convex minimization</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convex analysis</subject><subject>Integer programming</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Short Communication</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KxDAUhYMoWEcfwF3BdfTepk2apYw6CgNudB3STCIZpu2YtDL16c1QF25cXTicH-5HyDXCLQKIu4iAIChgRUGioNMJybBknJa85KckAygqWnGEc3IR4xYAkNV1RujDqHd-mHLXh7z1B7uhvhvshw256bsve0hi51v_rQffd5fkzOldtFe_d0Henx7fls90_bp6Wd6vqWGVHGghnbbA6k1Ro2O60Lypylq6tIjIuHYOBOpGSGtEIWvDG22ZkwYaJxhjhi3Izdy7D_3naOOgtv0YujSpUEiOqVfw5MLZZUIfY7BO7YNvdZgUgjpSUTMVlaioIxU1pUwxZ2LydunNP83_hn4ATrdkqA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Baes, Michel</creator><creator>Oertel, Timm</creator><creator>Weismantel, Robert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160701</creationdate><title>Duality for mixed-integer convex minimization</title><author>Baes, Michel ; Oertel, Timm ; Weismantel, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-29fae038d281f3a2a6b5489f3881136aff071ab79ec7298c6bae3f9c0bf7333c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convex analysis</topic><topic>Integer programming</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Short Communication</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baes, Michel</creatorcontrib><creatorcontrib>Oertel, Timm</creatorcontrib><creatorcontrib>Weismantel, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baes, Michel</au><au>Oertel, Timm</au><au>Weismantel, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality for mixed-integer convex minimization</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>158</volume><issue>1-2</issue><spage>547</spage><epage>564</epage><pages>547-564</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-015-0917-y</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2016-07, Vol.158 (1-2), p.547-564
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_1796128176
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Calculus of Variations and Optimal Control
Optimization
Combinatorics
Convex analysis
Integer programming
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Operations research
Optimization
Short Communication
Studies
Theoretical
title Duality for mixed-integer convex minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20for%20mixed-integer%20convex%20minimization&rft.jtitle=Mathematical%20programming&rft.au=Baes,%20Michel&rft.date=2016-07-01&rft.volume=158&rft.issue=1-2&rft.spage=547&rft.epage=564&rft.pages=547-564&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-015-0917-y&rft_dat=%3Cproquest_cross%3E4087844161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796128176&rft_id=info:pmid/&rfr_iscdi=true