Duality for mixed-integer convex minimization

We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2016-07, Vol.158 (1-2), p.547-564
Hauptverfasser: Baes, Michel, Oertel, Timm, Weismantel, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-015-0917-y