Research on Low Temperature Anodic Bonding Based on Interface Pretreatment of Dielectric Barrier Discharge Plasma

A simple composite bonding that combines dielectric barrier discharge (DBD) plasma activation with anodic bonding has been developed to achieve strong silicon/glass bonding at low temperature. The realization of low temperature bonding is attributed to enhance the hydrophilicity and smooth of silico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2015-05, Vol.645-646, p.356-361
Hauptverfasser: Pan, Ming Qiang, Sun, Lin Ning, Wang, Yang Jun, Liu, Ji Zhu, Liu, Hui Cong, Chen, Li Guo, Chen, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple composite bonding that combines dielectric barrier discharge (DBD) plasma activation with anodic bonding has been developed to achieve strong silicon/glass bonding at low temperature. The realization of low temperature bonding is attributed to enhance the hydrophilicity and smooth of silicon and glass surfaces and form lots of free radical after the DBD plasma (including-OH, -H, O, and heat) reacts with the interfaces. And these further reduce the difficulty of chemical bond switching, and improve the speed of the intimate contact formation. The experimental result show that the bonding temperature strongly decreased 100°C by using composite anodic bonding with DBD pretreatment which strength kept constant, and 10MPa bonding strength was obtained at 250°C/900V after the bonding interface was treated for 10s under the conditions of AC1.5KV/25KHz and the clearance 100μm.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.645-646.356