Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation
A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the la...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2016-06, Vol.23 (6), p.1, Article 120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the latter polymer for CO
2
/CH
4
gas separation. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and stress–strain tests. These blend membranes showed two distinct
T
g
s, indicating their immiscible nature as confirmed by SEM images. However, weak intermolecular interaction between polymers, as illustrated by the FTIR results, corresponds to some degree to their compatibility and improved mechanical strength, compared to the pure Pebax®. TGA analysis revealed that addition of glassy polymer improved membranes’ thermal stability. Effect of feed pressure on membrane separation, investigated by three different pressures (4, 8, and 12 bar), indicated increased permeability for higher pressures for both CO
2
and CH
4
. Gas separation tests also pointed to improved separation properties of the blend membranes compared to those of the neat polymers, prepared the same way. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-016-1005-6 |