Volatility Harvesting: Extracting Return from Randomness

Studying binomial and Gaussian return dynamics in discrete time, we show how excess volatility can be traded to create growth. We test our results on real‐world data to confirm the observed model phenomena while also highlighting the implicit risks.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wilmott (London, England) England), 2016-05, Vol.2016 (83), p.60-67
1. Verfasser: Witte, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying binomial and Gaussian return dynamics in discrete time, we show how excess volatility can be traded to create growth. We test our results on real‐world data to confirm the observed model phenomena while also highlighting the implicit risks.
ISSN:1540-6962
1541-8286
DOI:10.1002/wilm.10511