INFERENCE FOR SINGLE-INDEX QUANTILE REGRESSION MODELS WITH PROFILE OPTIMIZATION

Single index models offer greater flexibility in data analysis than linear models but retain some of the desirable properties such as the interpretability of the coefficients. We consider a pseudo-profile likelihood approach to estimation and testing for single-index quantile regression models. We e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2016-06, Vol.44 (3), p.1234-1268
Hauptverfasser: Ma, Shujie, He, Xuming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single index models offer greater flexibility in data analysis than linear models but retain some of the desirable properties such as the interpretability of the coefficients. We consider a pseudo-profile likelihood approach to estimation and testing for single-index quantile regression models. We establish the asymptotic normality of the index coefficient estimator as well as the optimal convergence rate of the nonparametric function estimation. Moreover, we propose a score test for the index coefficient based on the gradient of the pseudo-profile likelihood, and employ a penalized procedure to perform consistent model selection and model estimation simultaneously. We also use Monte Carlo studies to support our asymptotic results, and use an empirical example to illustrate the proposed method.
ISSN:0090-5364
2168-8966
DOI:10.1214/15-AOS1404