Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions

We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials research 2015-04, Vol.1096, p.161-168
Hauptverfasser: Abrokwah, Richard Yeboah, Kuila, Debasish, Deshmane, Vishwanath G., Owen, Sri Lanka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 161
container_title Advanced materials research
container_volume 1096
creator Abrokwah, Richard Yeboah
Kuila, Debasish
Deshmane, Vishwanath G.
Owen, Sri Lanka
description We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000 m2/g, Cu-Ni/TiO2 yields surface area of 250-350 m2/g depending on the metal loading (5-10 wt%). The XRD studies confirmed a long range ordered structure in Cu-Ni/MCM-41 and the presence of the catalytically active anatase phase in the crystalline Cu-Ni/TiO2. The results from HRTEM studies were consistent with the mesoporosity of both supports. These catalysts were tested for methanol conversion and H2/CO selectivity via steam reforming of methanol (SRM) reactions in a fixed bed reactor. There is a distinct difference in the performance of these two supports. Bimetallic 3.33%Cu6.67%Ni/TiO2 catalyst showed an impressive 99% H2 selectivity at as low as 150°C and a maximum conversion of 92% at 250 °C but 3.33%Cu6.67%Ni/MCM-41 catalyst did not show any H2 selectivity at 150°C and only ~12% conversion at 250°C. The effect of each support and relative metal loadings on the activity and selectivity of the SRM reaction products at different temperatures is discussed.
doi_str_mv 10.4028/www.scientific.net/AMR.1096.161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1790117925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4062538671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2451-504d84ba8e532cfff96745f4b83352b8403fb900ee126afa16e4bfb2c3529d4a3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYsoOD7-Q8CFq9YkTWO7kqE4Kjij-FiHNL3RDJ1kTFKH-fdGRtClm3sPnMM58GXZOcEFw7S-2Gw2RVAGbDTaqMJCvJjOnwqCG14QTvayCeGc5nVTV_tJY0pzzmt8mB2FsMSYM0KrSebbMV8YtJDWKRnlsA0xIGPRHIJbO-_GgObtPGcESdujF_NAUXTo0bt-VIBut713b2CRdh7NRhhQC8MQ0KeR6DmCXKEnSNbK2LekpIrG2XCSHWg5BDj9-cfZ6-z6pb3N7x9u7trpfa4oq0heYdbXrJM1VCVVWuuGX7JKs64uy4p2NcOl7hqMAQjlUkvCgXW6oyq5Tc9keZyd7XrX3n2MEKJYutHbNCnIZYNJOrRKqatdSnkXggct1t6spN8KgsU3aJFAi1_QIoEWCbT4Bi0S6NQw3TVEL22IoN7_DP2z4wvtkI8t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790117925</pqid></control><display><type>article</type><title>Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions</title><source>Scientific.net Journals</source><creator>Abrokwah, Richard Yeboah ; Kuila, Debasish ; Deshmane, Vishwanath G. ; Owen, Sri Lanka</creator><creatorcontrib>Abrokwah, Richard Yeboah ; Kuila, Debasish ; Deshmane, Vishwanath G. ; Owen, Sri Lanka</creatorcontrib><description>We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000 m2/g, Cu-Ni/TiO2 yields surface area of 250-350 m2/g depending on the metal loading (5-10 wt%). The XRD studies confirmed a long range ordered structure in Cu-Ni/MCM-41 and the presence of the catalytically active anatase phase in the crystalline Cu-Ni/TiO2. The results from HRTEM studies were consistent with the mesoporosity of both supports. These catalysts were tested for methanol conversion and H2/CO selectivity via steam reforming of methanol (SRM) reactions in a fixed bed reactor. There is a distinct difference in the performance of these two supports. Bimetallic 3.33%Cu6.67%Ni/TiO2 catalyst showed an impressive 99% H2 selectivity at as low as 150°C and a maximum conversion of 92% at 250 °C but 3.33%Cu6.67%Ni/MCM-41 catalyst did not show any H2 selectivity at 150°C and only ~12% conversion at 250°C. The effect of each support and relative metal loadings on the activity and selectivity of the SRM reaction products at different temperatures is discussed.</description><identifier>ISSN: 1022-6680</identifier><identifier>ISSN: 1662-8985</identifier><identifier>EISSN: 1662-8985</identifier><identifier>DOI: 10.4028/www.scientific.net/AMR.1096.161</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Advanced materials research, 2015-04, Vol.1096, p.161-168</ispartof><rights>2015 Abrokwah et al.</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2451-504d84ba8e532cfff96745f4b83352b8403fb900ee126afa16e4bfb2c3529d4a3</citedby><cites>FETCH-LOGICAL-c2451-504d84ba8e532cfff96745f4b83352b8403fb900ee126afa16e4bfb2c3529d4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3838?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abrokwah, Richard Yeboah</creatorcontrib><creatorcontrib>Kuila, Debasish</creatorcontrib><creatorcontrib>Deshmane, Vishwanath G.</creatorcontrib><creatorcontrib>Owen, Sri Lanka</creatorcontrib><title>Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions</title><title>Advanced materials research</title><description>We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000 m2/g, Cu-Ni/TiO2 yields surface area of 250-350 m2/g depending on the metal loading (5-10 wt%). The XRD studies confirmed a long range ordered structure in Cu-Ni/MCM-41 and the presence of the catalytically active anatase phase in the crystalline Cu-Ni/TiO2. The results from HRTEM studies were consistent with the mesoporosity of both supports. These catalysts were tested for methanol conversion and H2/CO selectivity via steam reforming of methanol (SRM) reactions in a fixed bed reactor. There is a distinct difference in the performance of these two supports. Bimetallic 3.33%Cu6.67%Ni/TiO2 catalyst showed an impressive 99% H2 selectivity at as low as 150°C and a maximum conversion of 92% at 250 °C but 3.33%Cu6.67%Ni/MCM-41 catalyst did not show any H2 selectivity at 150°C and only ~12% conversion at 250°C. The effect of each support and relative metal loadings on the activity and selectivity of the SRM reaction products at different temperatures is discussed.</description><issn>1022-6680</issn><issn>1662-8985</issn><issn>1662-8985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLxDAUhYsoOD7-Q8CFq9YkTWO7kqE4Kjij-FiHNL3RDJ1kTFKH-fdGRtClm3sPnMM58GXZOcEFw7S-2Gw2RVAGbDTaqMJCvJjOnwqCG14QTvayCeGc5nVTV_tJY0pzzmt8mB2FsMSYM0KrSebbMV8YtJDWKRnlsA0xIGPRHIJbO-_GgObtPGcESdujF_NAUXTo0bt-VIBut713b2CRdh7NRhhQC8MQ0KeR6DmCXKEnSNbK2LekpIrG2XCSHWg5BDj9-cfZ6-z6pb3N7x9u7trpfa4oq0heYdbXrJM1VCVVWuuGX7JKs64uy4p2NcOl7hqMAQjlUkvCgXW6oyq5Tc9keZyd7XrX3n2MEKJYutHbNCnIZYNJOrRKqatdSnkXggct1t6spN8KgsU3aJFAi1_QIoEWCbT4Bi0S6NQw3TVEL22IoN7_DP2z4wvtkI8t</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Abrokwah, Richard Yeboah</creator><creator>Kuila, Debasish</creator><creator>Deshmane, Vishwanath G.</creator><creator>Owen, Sri Lanka</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150401</creationdate><title>Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions</title><author>Abrokwah, Richard Yeboah ; Kuila, Debasish ; Deshmane, Vishwanath G. ; Owen, Sri Lanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2451-504d84ba8e532cfff96745f4b83352b8403fb900ee126afa16e4bfb2c3529d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrokwah, Richard Yeboah</creatorcontrib><creatorcontrib>Kuila, Debasish</creatorcontrib><creatorcontrib>Deshmane, Vishwanath G.</creatorcontrib><creatorcontrib>Owen, Sri Lanka</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advanced materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrokwah, Richard Yeboah</au><au>Kuila, Debasish</au><au>Deshmane, Vishwanath G.</au><au>Owen, Sri Lanka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions</atitle><jtitle>Advanced materials research</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>1096</volume><spage>161</spage><epage>168</epage><pages>161-168</pages><issn>1022-6680</issn><issn>1662-8985</issn><eissn>1662-8985</eissn><abstract>We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000 m2/g, Cu-Ni/TiO2 yields surface area of 250-350 m2/g depending on the metal loading (5-10 wt%). The XRD studies confirmed a long range ordered structure in Cu-Ni/MCM-41 and the presence of the catalytically active anatase phase in the crystalline Cu-Ni/TiO2. The results from HRTEM studies were consistent with the mesoporosity of both supports. These catalysts were tested for methanol conversion and H2/CO selectivity via steam reforming of methanol (SRM) reactions in a fixed bed reactor. There is a distinct difference in the performance of these two supports. Bimetallic 3.33%Cu6.67%Ni/TiO2 catalyst showed an impressive 99% H2 selectivity at as low as 150°C and a maximum conversion of 92% at 250 °C but 3.33%Cu6.67%Ni/MCM-41 catalyst did not show any H2 selectivity at 150°C and only ~12% conversion at 250°C. The effect of each support and relative metal loadings on the activity and selectivity of the SRM reaction products at different temperatures is discussed.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMR.1096.161</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-6680
ispartof Advanced materials research, 2015-04, Vol.1096, p.161-168
issn 1022-6680
1662-8985
1662-8985
language eng
recordid cdi_proquest_journals_1790117925
source Scientific.net Journals
title Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu-Ni%20Nanocatalysts%20in%20Mesoporous%20MCM-41%20and%20TiO2%20to%20Produce%20Hydrogen%20for%20Fuel%20Cells%20via%20Steam%20Reforming%20Reactions&rft.jtitle=Advanced%20materials%20research&rft.au=Abrokwah,%20Richard%20Yeboah&rft.date=2015-04-01&rft.volume=1096&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.issn=1022-6680&rft.eissn=1662-8985&rft_id=info:doi/10.4028/www.scientific.net/AMR.1096.161&rft_dat=%3Cproquest_cross%3E4062538671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790117925&rft_id=info:pmid/&rfr_iscdi=true