Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO2 to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions
We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000...
Gespeichert in:
Veröffentlicht in: | Advanced materials research 2015-04, Vol.1096, p.161-168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have synthesized mesoporous SiO2 (MCM-41) and TiO2 encapsulated bimetallic Cu-Ni nanocatalysts using an optimized one-pot hydrothermal procedure. The catalysts were characterized using BET, XRD, TGA-DSC and HRTEM techniques. While bimetallic Cu-Ni/MCM-41catalysts have high surface area- 634-1000 m2/g, Cu-Ni/TiO2 yields surface area of 250-350 m2/g depending on the metal loading (5-10 wt%). The XRD studies confirmed a long range ordered structure in Cu-Ni/MCM-41 and the presence of the catalytically active anatase phase in the crystalline Cu-Ni/TiO2. The results from HRTEM studies were consistent with the mesoporosity of both supports. These catalysts were tested for methanol conversion and H2/CO selectivity via steam reforming of methanol (SRM) reactions in a fixed bed reactor. There is a distinct difference in the performance of these two supports. Bimetallic 3.33%Cu6.67%Ni/TiO2 catalyst showed an impressive 99% H2 selectivity at as low as 150°C and a maximum conversion of 92% at 250 °C but 3.33%Cu6.67%Ni/MCM-41 catalyst did not show any H2 selectivity at 150°C and only ~12% conversion at 250°C. The effect of each support and relative metal loadings on the activity and selectivity of the SRM reaction products at different temperatures is discussed. |
---|---|
ISSN: | 1022-6680 1662-8985 1662-8985 |
DOI: | 10.4028/www.scientific.net/AMR.1096.161 |