Electrical Properties of Carbon-Based Thin Film on Al2O3/Si
The electrical properties of Metal Insulator Semiconductor (MIS) structure comprise of carbon-based thin film grown on γ-Al2O3/Si have been studied. The carbon based thin film is deposited by using DC unbalanced magnetron sputtering using Fe doped carbon pellet as a target. Electrical properties of...
Gespeichert in:
Veröffentlicht in: | Advanced materials research 2015-07, Vol.1112, p.85-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrical properties of Metal Insulator Semiconductor (MIS) structure comprise of carbon-based thin film grown on γ-Al2O3/Si have been studied. The carbon based thin film is deposited by using DC unbalanced magnetron sputtering using Fe doped carbon pellet as a target. Electrical properties of this structure have been analyzed through I-V characteristics measurements using cross-sectional electrode configurations. In-plane I-V measurement confirms the electrical conductivity of carbon layer is higher than Al2O3. The role of carbon thin film has been investigated by comparing the I-V characteristic of MIS structure with and without carbon thin film. Carbon layer and interface states of carbon/γ-Al2O3 have a significant contribution to enhance the cross-sectional current density. A simple energy band diagram model and theoretical calculation have been developed to further analyze this I-V characteristics data. This study is expected to be an alternative way to support the realization of future carbon-based electronic devices. |
---|---|
ISSN: | 1022-6680 1662-8985 1662-8985 |
DOI: | 10.4028/www.scientific.net/AMR.1112.85 |