Liquid Phase Separation and Dual Glassy Structure Formation of Designed Zr-Ce-Co-Cu Alloys
Development of liquid-phase separated bulk metallic glasses is retarded due to difficulties in finding of immiscible systems with high glass-forming ability (GFA) of coexistent liquids. Zr-Ce alloy is a typical liquid immiscible system characterized by a liquid miscibility gap. We added Co and Cu in...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2016-03, Vol.849, p.100-106 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of liquid-phase separated bulk metallic glasses is retarded due to difficulties in finding of immiscible systems with high glass-forming ability (GFA) of coexistent liquids. Zr-Ce alloy is a typical liquid immiscible system characterized by a liquid miscibility gap. We added Co and Cu into the Zr-Ce immiscible system and optimized the composition of the designed Zr-Ce-Co-Cu immiscible alloys. The solidification experiments were carried out for the quaternary alloys. The result indicates that the melt separated into ZrCo-rich and CeCu-rich liquids upon cooling through the miscibility gap. By optimizing the relative atomic ratio of Co:Cu, the coexistent ZrCo-rich and CeCu-rich liquids automatically assembled eutectic compositions during the liquid-liquid phase separation (LLPS). Under the condition of fast quenching, the two liquids subsequently undergo liquid-to-glass transition, resulting in the formation of composite structure with two glasses in the samples. We successfully developed phased-separated metallic glasses based on the Zr-Ce-Co-Cu immiscible alloys. This work not only strengthens the understanding in the LLPS but also provides a new strategy on the design of the dual glassy composites. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.849.100 |