Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
Glycerol, a liquid matrix material for matrix-assisted laser desorption ionization mass spectrometry, was irradiated by a tunable pulsed infrared laser at wavelengths of 2.80 μm, 2.94 μm, 3.10 μm and 3.50 μm, covering the OH and CH stretch vibrations. A fast photography system was introduced to anal...
Gespeichert in:
Veröffentlicht in: | Chemical papers 2016-06, Vol.70 (3), p.848-855 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glycerol, a liquid matrix material for matrix-assisted laser desorption ionization mass spectrometry, was irradiated by a tunable pulsed infrared laser at wavelengths of 2.80 μm, 2.94 μm, 3.10 μm and 3.50 μm, covering the OH and CH stretch vibrations. A fast photography system was introduced to analyze the dynamic process of plume propagation induced by laser ablation up to 1000 μs of the delay time. Propagation distance of the plume front was measured and the corresponding velocities were calculated; they varied with the wavelength and decreased with the delay time. At the tunable wavelength of the peak of the OH absorption (3.0 μm), theoretical calculations indicate that energy deposition from the pulsed laser is in the regime of stress confinement. The mode of energy deposition depends on the wavelength of the OH vibration and its distance from the absorption maxima. However, stages after a 10 μs delay at various wavelengths show a certain similarity in the distance of plume propagation, which can be well fitted by a drag model. |
---|---|
ISSN: | 0366-6352 1336-9075 |
DOI: | 10.1515/chempap-2016-0012 |