Influence of Rotation on the Magnetization of Dilute Suspensions of Magnetic Particles
The influence of rotation on the magnetization of a suspension of spherical magnetic particles in a uniform magnetic field is investigated theoretically with taking into account the inertial effects. A rotation of a single spherical non-Brownian particle with an embedded magnetic moment under action...
Gespeichert in:
Veröffentlicht in: | Solid state phenomena 2015-07, Vol.233-234, p.302-305 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of rotation on the magnetization of a suspension of spherical magnetic particles in a uniform magnetic field is investigated theoretically with taking into account the inertial effects. A rotation of a single spherical non-Brownian particle with an embedded magnetic moment under action of a rotational flow of the ambient liquid in an applied uniform magnetic field is considered. The system of equations is obtained that determines the rotation of the particle and the instant orientation of its magnetic dipole moment with taking into account both the inertia of the particles and that of the dispersion liquid of the suspension. The magnetization vector of a suspension of non-Brownian spherical magnetic particles is found for the suspension rotating in a uniform constant magnetic field and for that rotating in a sufficiently weak uniform alternating magnetic field. The system of equations is obtained for the function of distribution over the orientations of the magnetic dipole moments for a suspension of Brownian spherical magnetic particles rotating in a uniform magnetic field. The solution to this system of equations is obtained for a suspension rotating in a sufficiently weak alternating magnetic field. With the use of this solution, the magnetization vector of the suspension is found. |
---|---|
ISSN: | 1012-0394 1662-9779 1662-9779 |
DOI: | 10.4028/www.scientific.net/SSP.233-234.302 |