Integration of OLEDs in Textiles

In place of silicon, which is normally used in microelectronics, organic materials offer the opportunity to produce devices on large area, low-cost and plastic planar substrates. These materials are attracting increased attention also in the field of electronic-textiles (e-textiles) because they sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Science and Technology 2013-01, Vol.80, p.14-21
Hauptverfasser: Schulze, Kerstin, Janietz, Silvia, Gruber, Björn, Schattauer, Sylvia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In place of silicon, which is normally used in microelectronics, organic materials offer the opportunity to produce devices on large area, low-cost and plastic planar substrates. These materials are attracting increased attention also in the field of electronic-textiles (e-textiles) because they show an interesting combination of electronic and mechanical properties that can be favourably exploited in smart textiles. A key step for the integration of mass production of e-textiles is to combine electronic production with textile manufactures. In the last years, progress has been achieved in the development of fibers and their processing for application in e-textiles. The application ranged from fabric integrated light sources to low cost solid state lighting for protection and security. Here research results are presented regarding the integration of encapsulated glass OLEDs and additionally OLEDs fabricated on flexible high barrier substrates which were integrated into textiles. On the other hand, the first results concerning the realization of an OLED on cylindrical surfaces based on solution processed technologies which is a first step in the direction of low cost processing will be discussed. A simple, inverted planar construction prepared from solution was realized. This preliminary work was the precondition for the development of a fiber based OLED. In addition, OLEDs that were prepared using glass fibers as substrates and solution processed active and hole-transport layers will be shown.
ISSN:1662-8969
1662-0356
DOI:10.4028/www.scientific.net/AST.80.14