Photocatalytic degradation of humic acids using substrate-supported Fe^sup 3+^-doped TiO2 nanotubes under UV/O3 for water purification
Issue Title: Molecular and cellular effects of contamination in aquatic ecosystems In this paper, Fe3+-doped TiO2 nanotubes (Fe-TNTs) were successfully synthesized using hydrothermal method. Four different types of substrates, more specifically, ceramsite, zeolite, activated alumina, and activated c...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2015-11, Vol.22 (22), p.17955 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Issue Title: Molecular and cellular effects of contamination in aquatic ecosystems In this paper, Fe3+-doped TiO2 nanotubes (Fe-TNTs) were successfully synthesized using hydrothermal method. Four different types of substrates, more specifically, ceramsite, zeolite, activated alumina, and activated carbon (AC), have been investigated in the study. The substrate-supported Fe-TNTs were used to effectively decompose humic acids (HAs) in water under O3/UV conditions. The experiment results show that the highest photocatalytic activity was obtained in the presence of AC-supported 1.0 atomic percent (at.%) Fe-TNTs calcined at 500 °C, as HAs was removed by 97.4 %, with a pseudo-first-order rate constant of 0.126/min. The removal efficiencies of HAs reduced when the catalysts was repeatedly used, since the amount of adsorption sites of the supporting substrates decreased. However, even after the catalyst was repeatedly used for five times, the removal efficiency of HAs in the presence of AC-supported catalyst, which was 78.5 %, was still sufficient in water treatment. The enhanced photocatalytic activity of AC-supported Fe-TNTs was related to a synergistic effect of AC adsorption and Fe-TNT photocatalytic ozonation. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-015-4910-z |