A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators
This paper presents a new adaptive sliding-mode control (ASMC) scheme that uses the time-delay estimation (TDE) technique, then applies the scheme to robot manipulators. The proposed ASMC uses a new adaptive law to achieve good tracking performance with small chattering effect. The new adaptive law...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2016-06, Vol.63 (6), p.3628-3637 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new adaptive sliding-mode control (ASMC) scheme that uses the time-delay estimation (TDE) technique, then applies the scheme to robot manipulators. The proposed ASMC uses a new adaptive law to achieve good tracking performance with small chattering effect. The new adaptive law considers an arbitrarily small vicinity of the sliding manifold, in which the derivatives of the adaptive gains are inversely proportional to the sliding variables. Such an adaptive law provides remarkably fast adaptation and chattering reduction near the sliding manifold. To yield the desirable closed-loop poles and simplify a complicated system model by adapting feedback compensation, the proposed ASMC scheme works together with a pole-placement control (PPC) and a TDE technique. It is shown that the tracking errors of the proposed ASMC scheme are guaranteed to be uniformly ultimately bounded (UUB) with arbitrarily small bound. The practical effectiveness and the fast adaptation of the proposed ASMC are illustrated in simulations and experiments with robot manipulators, and compared with those of an existing ASMC. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2016.2522386 |