Generalized 2-D Principal Component Analysis by Lp-Norm for Image Analysis

This paper proposes a generalized 2-D principal component analysis (G2DPCA) by replacing the L2-norm in conventional 2-D principal component analysis (2DPCA) with Lp-norm, both in objective and constraint functions. It is a generalization of previously proposed robust or sparse 2DPCA algorithms. Und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2016-03, Vol.46 (3), p.792-803
1. Verfasser: Wang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a generalized 2-D principal component analysis (G2DPCA) by replacing the L2-norm in conventional 2-D principal component analysis (2DPCA) with Lp-norm, both in objective and constraint functions. It is a generalization of previously proposed robust or sparse 2DPCA algorithms. Under the framework of minorization-maximization, we design an iterative algorithm to solve the optimization problem of G2DPCA. A closed-form solution could be obtained in each iteration. Then a deflating scheme is employed to generate multiple projection vectors. Our algorithm guarantees to find a locally optimal solution for G2DPCA. The effectiveness of the proposed method is experimentally verified.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2015.2416274