Optimum Reconfiguration of Droop-Controlled Islanded Microgrids

This paper proposes a new formulation for the optimum reconfiguration of islanded microgrid (IMG) systems. The reconfiguration problem is casted as a multi-objective optimization problem, in order to: 1) minimize the IMG fuel consumption in the operational planning horizon for which islanded operati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2016-05, Vol.31 (3), p.2144-2153
Hauptverfasser: Abdelaziz, Morad Mohamed Abdelmageed, Farag, Hany E., El-Saadany, Ehab F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new formulation for the optimum reconfiguration of islanded microgrid (IMG) systems. The reconfiguration problem is casted as a multi-objective optimization problem, in order to: 1) minimize the IMG fuel consumption in the operational planning horizon for which islanded operation is planned; 2) ensure the IMG capability to feed the maximum possible demand by enhancing its voltage instability proximity index taken over all the states at which the islanded system may reside; and 3) minimize the relevant switching operation costs. The proposed problem formulation takes into consideration the system's operational constraints in all operating conditions based on the consideration of the uncertainty associated with renewable resources output power and load variability. Moreover, the proposed formulation accounts for droop controlled IMG special operational characteristics as well as the availability/unavailability of a supervisory microgrid central controller (MGCC). The formulated problem is solved using non-dominated sorting genetic algorithm II (NSGA-II). MATLAB environment has been used to test and validate the proposed problem formulation. The results show that the implementation of appropriate IMG reconfiguration problem formulations will enhance the performance of IMG systems and facilitate a successful integration of the microgrid concept in distribution networks.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2015.2456154