Solution of a Bivariate Regularized Problem

We derive the mapping that takes an observation vector to the minimizer of a bivariate cost consisting of the sum of a quadratic data fidelity term and an [Formula Omitted] norm. The derived mapping is useful for accelerating convergence of iterative algorithms that aim to solve [Formula Omitted] re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-05, Vol.23 (5), p.653-657
1. Verfasser: Bayram, Ilker
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive the mapping that takes an observation vector to the minimizer of a bivariate cost consisting of the sum of a quadratic data fidelity term and an [Formula Omitted] norm. The derived mapping is useful for accelerating convergence of iterative algorithms that aim to solve [Formula Omitted] regularized problems. We discuss how to use the mapping in practice and demonstrate the improvement in convergence rate with numerical experiments.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2016.2544949