Solution of a Bivariate Regularized Problem
We derive the mapping that takes an observation vector to the minimizer of a bivariate cost consisting of the sum of a quadratic data fidelity term and an [Formula Omitted] norm. The derived mapping is useful for accelerating convergence of iterative algorithms that aim to solve [Formula Omitted] re...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2016-05, Vol.23 (5), p.653-657 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive the mapping that takes an observation vector to the minimizer of a bivariate cost consisting of the sum of a quadratic data fidelity term and an [Formula Omitted] norm. The derived mapping is useful for accelerating convergence of iterative algorithms that aim to solve [Formula Omitted] regularized problems. We discuss how to use the mapping in practice and demonstrate the improvement in convergence rate with numerical experiments. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2016.2544949 |