Unobtrusive and Multimodal Wearable Sensing to Quantify Anxiety
This paper aims to develop an objective index for anxiety based on features derived from electroencephalogram (EEG) and photoplethysmogram (PPG) collected from wearable headset and glasses. The 20 subjects were asked to ride at his most comfortable speed in Task 1 and ride while imagining competing...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-05, Vol.16 (10), p.3689-3696 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to develop an objective index for anxiety based on features derived from electroencephalogram (EEG) and photoplethysmogram (PPG) collected from wearable headset and glasses. The 20 subjects were asked to ride at his most comfortable speed in Task 1 and ride while imagining competing with another person in Task 2. A Competitive State Anxiety Inventory-2 questionnaire was conducted before each task to evaluate the anxiety level of each participant. Various features were extracted from EEG and PPG. The results of this paper showed that the mean value and average power of alpha band wavelet coefficients and that of beta band are highly correlated with the anxiety level (r = -0.49 and -0.58, p |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2016.2539383 |