Highly Robust Integrated Gate-Driver for In-Cell Touch TFT-LCD Driven in Time Division Driving Method
This paper proposes a gate driver circuit for in-cell touch thin-film transistor (TFT) liquid crystal displays (LCDs) in which display and touch are driven at separate times to avoid cross-talk between display signals and touch signals. In the conventional gate driver circuit, transistors are connec...
Gespeichert in:
Veröffentlicht in: | Journal of display technology 2016-05, Vol.12 (5), p.435-441 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a gate driver circuit for in-cell touch thin-film transistor (TFT) liquid crystal displays (LCDs) in which display and touch are driven at separate times to avoid cross-talk between display signals and touch signals. In the conventional gate driver circuit, transistors are connected between the gate node of pull-up transistor Q node and the low DC supply voltage V GL to reset the Q node. In the proposed gate driver gate driver circuit, these transistors are instead connected to the Touch Enable signal. During the display operation, the Touch Enable signal voltage is V GL to operate the proposed gate driver circuit in the same way as the conventional circuit. During touch operations, the Touch Enable signal changes to the high DC supply voltage V GH to keep the voltage at the Q node constant without leakage. In simulations and experiments, the proposed gate driver circuit prevented display failures caused by the interval during which the display pauses in the middle of a frame time for touch operation. The fabricated low temperature poly-silicon (LTPS) TFT-LCD has good multi-touch functionality without any ghost touches, and achieved 40-dB SNR and 120 Hz touch report rate. |
---|---|
ISSN: | 1551-319X 1558-9323 |
DOI: | 10.1109/JDT.2015.2495121 |