On Submodularity and Controllability in Complex Dynamical Networks

Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a fini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2016-03, Vol.3 (1), p.91-101
Hauptverfasser: Summers, Tyler H., Cortesi, Fabrizio L., Lygeros, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power-electronic actuator placement in a model of the European power grid.
ISSN:2325-5870
2325-5870
2372-2533
DOI:10.1109/TCNS.2015.2453711